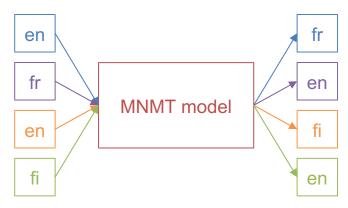
Variable-length Neural Interlingua Representations for Zero-shot Neural Machine Translation

Zhuoyuan Mao¹, Haiyue Song¹, Raj Dabre², Chenhui Chu¹, Sadao Kurohashi^{1,3}

¹Kyoto University ²NICT ³NII

Multilingual Neural Machine Translation

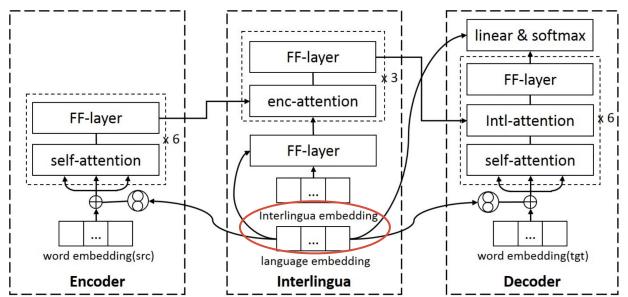
- Multilingual neural machine translation (MNMT) (Johnson et al., 2016)
 - Translation for multiple language pairs with a single model.
- Zero-shot translation (ZST)
 - Translation for unseen language pairs without training data.
 - Promising for its low latency compared with pivot-based translation.



An English-Finnish-French multilingual translation model, where en-to-fr, en-to-fi, fr-to-en, fi-to-en are supervised directions, and fi-fr, fr-fi are zero-shot directions.

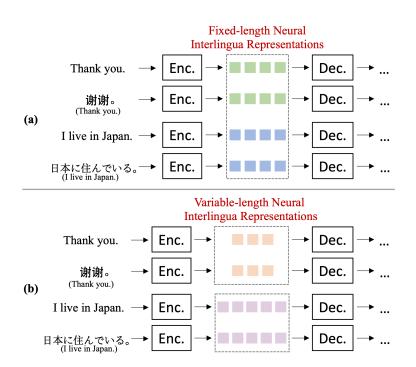
Neural Interlingua Representations for ZST

- Language-aware Interlingua for Multilingual Neural Machine Translation (Zhu et al., 2020)
 - Constructed fixed-length interlingua for MNMT with a interlingua module.



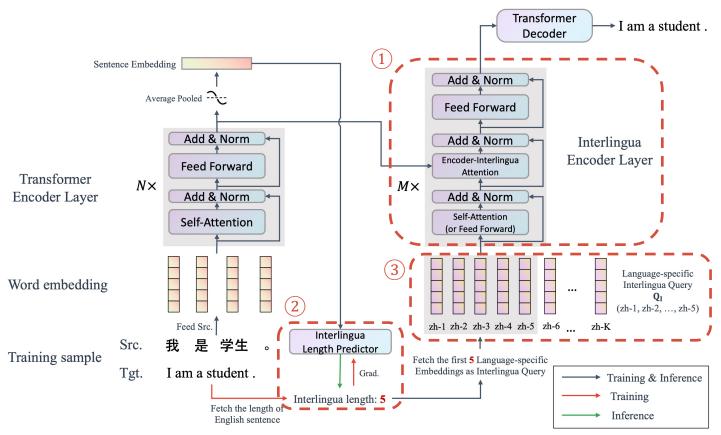
Motivation

- Fixed-length neural interlingua representations in previous work (a) can limit its flexibility and representation ability.
- This can be improved by introducing variable-length interlingua representations (b).



Each colored box denotes the representation ($\mathbb{R}^{d\times 1}$) on the corresponding position. "Enc.", "Dec.", and "d" are encoder, decoder, and dimension of model hidden states.

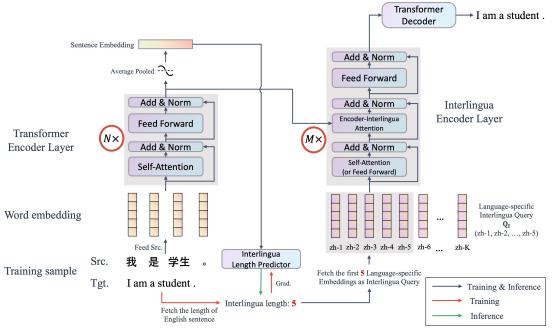
An Overview of Variable-length Interlingua Module (VIM)



"zh-x" denotes the x-th embedding of a Chinese-specific interlingua query.

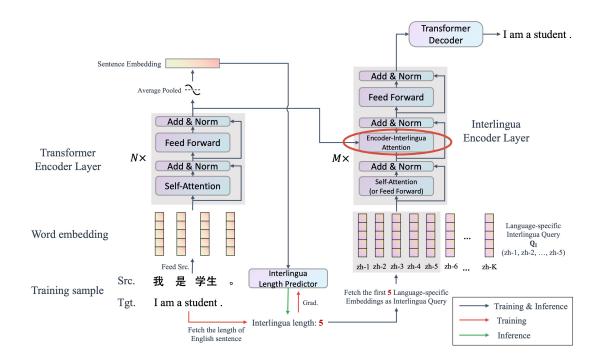
VIM: 1 Interlingua Encoder Layers

- *M* interlingua encoder layers, *N* vanilla transformer encoder layers.
 - -M+N=6 in order to maintain the consistency with a standard Transformer model.



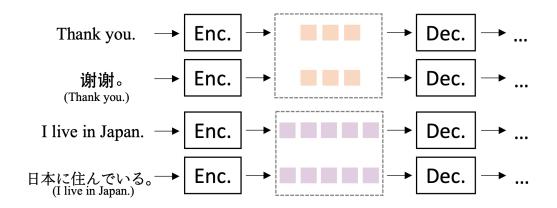
VIM: 1 Interlingua Encoder Layers

• Encoder-interlingua attention (cross-attention) modules to bridge encoder layers and interlingua encoder layers, following Zhu et al. (2020).



VIM: 1 Interlingua Encoder Layers

- An identical interlingua representation sequence for sentences in different languages with the same meaning, where length can vary for different meanings.
- We use **length of sentence in centric language** as length of interlingua representations for simplicity.

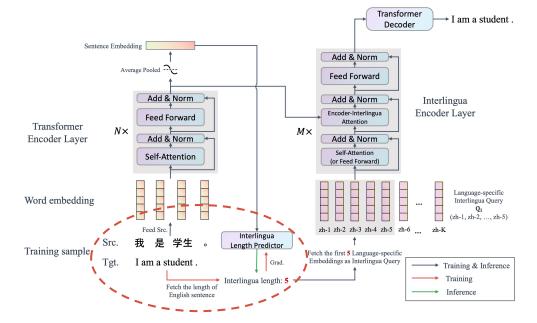


VIM: ② Interlingua Length Prediction

- We use English-centric datasets for training:
 - Length of interlingua is defined as length of English.

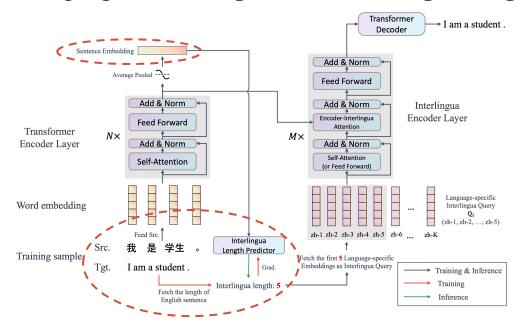
• A interlingua length predictor for predicting length of interlingua during

inference.



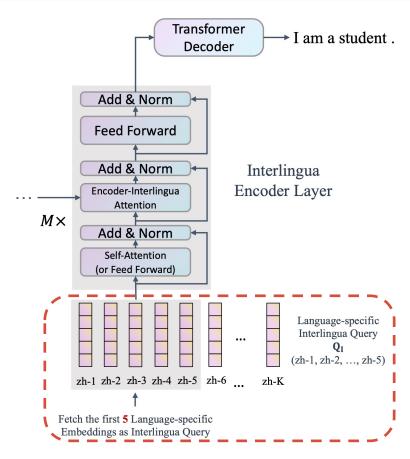
VIM: ② Interlingua Length Prediction

- Length predictor predicts interlingua length using **sentence embedding**.
- Training: Use length of English to calculate a classification loss.
- Inference: Use length predictor to generate interlingua length.



VIM: 3 Language-specific Interlingua Query

- Initialize language-specific embeddings as interlingua queries as inputs for interlingua encoder layers.
- Use the first x embeddings according to the intended interlingua length x.



Training Objectives

• Given a sentence pair (X, Y), we compute the loss by combining **NMT loss**, interlingua alignment loss, and length prediction loss.

$$\mathcal{L}(X,Y) = \alpha \mathcal{L}_{\text{NMT}} + \beta \mathcal{L}_{\text{IA}} + \gamma \mathcal{L}_{\text{LP}}$$

• Interlingua alignment loss follows Zhu et al. (2020), which is a position-wise cosine similarity loss for aligning interlingua embeddings for each sentence pair:

$$\mathcal{L}_{\mathrm{IA}} = 1 - \frac{1}{\mathrm{len}_{\mathrm{I}}(X)} \sum_{i} \cos \langle \mathbf{H}_{\mathrm{I}}(X)_{i}, \mathbf{H}_{\mathrm{I}}(Y)_{i} \rangle$$

where $H_I(\cdot)_i$ denotes the *i*-th column of interlingua encoder outputs.

Datasets

• 3 Datasets and 48 zero-shot translation directions in total.

Datasets	Languages	# Sup.	# Zero.	# Train	# Valid	# Test
OPUS	ar, de, en, fr, nl, ru, zh	12	30	12,000,000	2,000	2,000
IWSLT	en, it, nl, ro	6	6	1,378,794	2,562	1,147
Europarl	de, en, es, fr, nl	8	12	15,782,882	2,000	2,000

"# Sup." and "# Zero." indicate the respective number of language pairs for supervised and zero-shot translation. "# Train" denotes the total number of the training parallel sentences while "# Valid" and "# Test" showcase the number per language pair.

Baselines

1. MNMT

Vanilla multilingual neural machine translation.

2. Len-fix. Uni. Intl. (Zhu et al., 2020)

Fixed-length neural interlingua method following Zhu et al. (2020).

3. Len-fix. LS. Intl.

We use language-specific interlingua queries for Len-fix. Uni. Intl.

4. Len-vari. Intl. (ours)

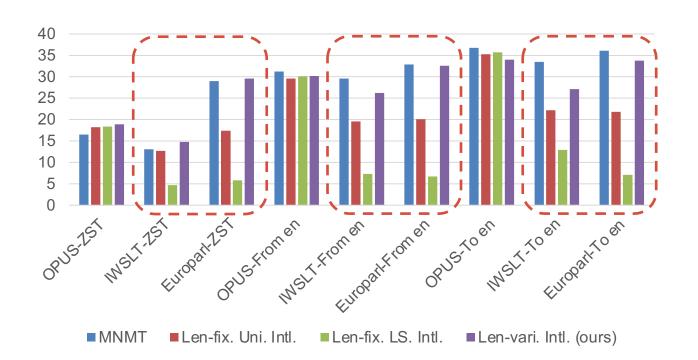
Our proposed variable-length interlingua method.

Results and Analysis

- BLEU results
- Validation NMT loss
- Impact of the interlingua length predictor

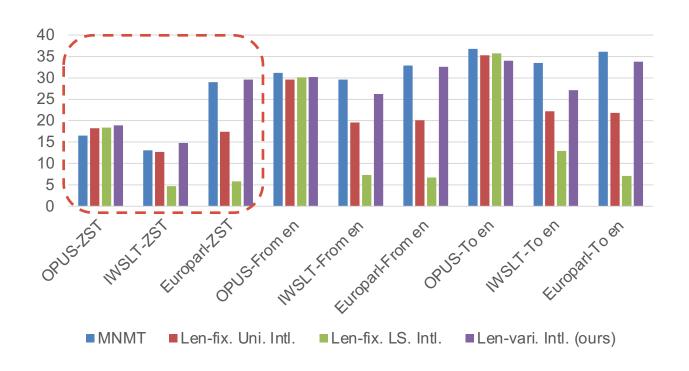
BLEU Results: An Overview

• Previous interlingua-based methods are not stable in low-resource datasets and Transformer-big model.



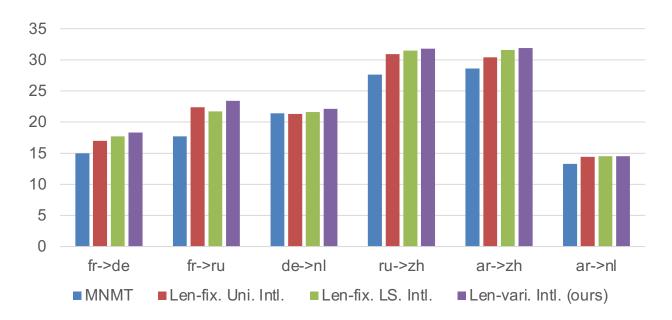
BLEU Results: An Overview

• Our method outperforms previous methods for zero-shot translation.



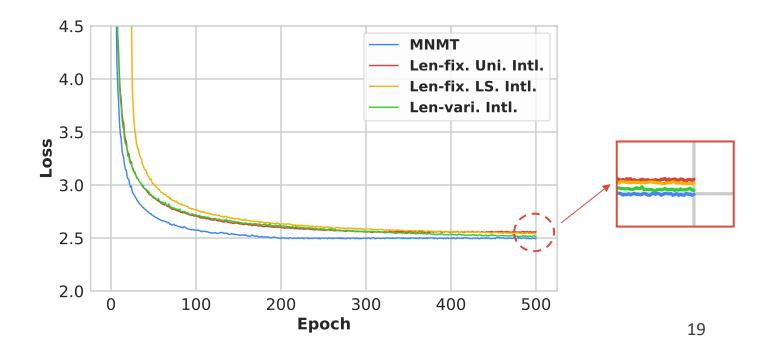
Some Specific BLEU Results on OPUS

• On OPUS, our proposed method performs significantly better than previous methods for zero-shot translation.



Validation NMT Loss

• Our method can achieve similar validation loss as a vanilla MNMT model. (validation loss is calculated for all the supervised directions)



Impact of the Interlingua Length Predictor

• Although our method can obtain improvements for zero-shot translation, we got worse performance for "to en" translation.

Impact of the Interlingua Length Predictor

- Although our method can obtain improvements for zero-shot translation, we got worse performance for "to en" translation.
- This is due to the incorrect length prediction of length predictor.
 - The discrepancy of around 3 tokens between the predicted lengths and the gold labels in average.

	ar	de	fr	nl	ru	zh	Avg.
Acc. of Len. Pre.	20.6	26.5	17.6	19.3	21.1	13.8	19.8
Avg. of Len. Pre. $ gold$	2.4	3.4	3.8	3.1	3.3	3.9	3.3
BLEU w/ Len. Pre.	33.8	32.3	32.6	27.9	32.2	45.3	34.0
BLEU w/ gold	35.5^{\dagger}	33.4^{\dagger}	33.3^{\dagger}	29.4^{\dagger}	33.4^{\dagger}	46.0^{\dagger}	35.2^{\dagger}

Impact of the Interlingua Length Predictor

- Although our method can obtain improvements for zero-shot translation, we got worse performance for "to en" translation.
- This can be attributed to the incorrect length prediction of length predictor.
 - The discrepancy of around 3 tokens between the predicted lengths and the gold labels in average.
 - Translation is improved by giving model the correct interlingua length.

	ar	de	fr	nl	ru	zh	Avg.
Acc. of Len. Pre.	20.6	26.5	17.6	19.3	21.1	13.8	19.8
Avg. of $ $ Len. Pre. $-$ <i>gold</i> $ $	2.4	3.4	3.8	3.1	3.3	3.9	3.3
BLEU w/ Len. Pre.	33.8	32.3	32.6	27.9	32.2	45.3	34.0
BLEU w/ gold	35.5 [†]	33.4^{\dagger}	33.3 [†]	29.4^{\dagger}	33.4^{\dagger}	46.0^{\dagger}	35.2 [†]

Conclusion

- A novel variable-length neural interlingua approach.
- Improved and stabilized zero-shot translation results.
- Future work can focus on improving the accuracy of length predictor.